Abstract
Transcriptional regulation by the IE175 (ICP4) and IE110 (ICP0) phosphorylated nuclear proteins encoded by herpes simplex virus (HSV) appears to be a key determinant for the establishment of successful lytic cycle infection. By indirect immunofluorescence in transient DNA transfection assays, we have examined the intracellular distribution of deletion and truncation mutants of both IE175 and IE110 from HSV-1. Insertion of short oligonucleotides encoding the basic amino acid motifs 726-GRKRKSP-732 from IE175 and 500-VRPRKRR-506 from IE110 into deleted cytoplasmic forms of the two proteins restored the karyophilic phenotype and confirmed that these motifs are both necessary and sufficient for proper nuclear localization. Analysis of IE110 deletion mutants and a panel of IE110/IE175 hybrid proteins was also used to evaluate the characteristic IE110 distribution within nuclear punctate granules as seen by immunofluorescence and phase-contrast microscopy. The phase-dense punctate pattern persisted with both large C-terminal truncations and deletions of the Cys-rich zinc finger region and even with a form of IE110 that localized in the cytoplasm, implying that the punctate characteristic is an intrinsic property of the N-terminal segment of the IE110 protein. Transfer of the full IE110-like punctate phenotype to the normally uniform diffuse nuclear pattern of the IE175 protein by exchange of the N-terminal domains of the two proteins demonstrated that the first 105 to 244 amino acids of IE110 represent the most important region for conferring punctate characteristics. Surprisingly, cotransfection of a wild-type nuclear IE175 gene together with the IE110 gene revealed that much of the IE175 protein produced was redistributed into a punctate pattern that colocalized with the IE110-associated punctate granules seen in the same cells. This colocalization did not occur after cotransfection of IE110 with the IE72 (IE1) nuclear protein of human cytomegalovirus and therefore cannot represent simple nonspecific trapping. Evidently, the punctate phenotype of IE110 represents a dominant characteristic that reveals the potential of IE110 and IE175 to physically interact with each other either directly or indirectly within the intracellular environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.