Abstract
Abstract Extreme hydrological events, such as floods and droughts, are becoming more frequent as a result of climate change, leading to negative impacts on various economic sectors. The Pannonian-Carpathian Basin is particularly affected by the increasing frequency of hazardous hydrological events. Agricultural production, which is a highly significant economic sector in the region, is particularly vulnerable to these unfavourable climatic conditions. Changes in precipitation patterns and soil moisture levels can lead to reduced crop yields, while floods can pollute water sources and erode fertile soil. Mapping of Inland Excess Water (IEW), also known as ponding water or waterlogged areas, is crucial for informed decision-making, damage compensation, risk management, and future prevention planning. Remote sensing technology and machine learning have been demonstrated to be valuable tools for the mapping of IEW. The 2014 floods in Southeastern and Central Europe serve as a reminder of the importance of effective flood risk management. This study used a Geographical Information System (GIS) and a Semi-automated Classification Processing (SCP) tool to process high-resolution RapidEye satellite images from the 2014 floods in the Srem region of Serbia. The Spectral Angle Mapping (SAM) classification model was used to produce a map of IEW. The SAM model achieved an overall accuracy of 92.68 %. The study found that IEW affected approximately 2.90 % or 99.59 km² of the territory in Srem. The obtained maps can be used by responsible water management agencies to prevent and control excessive inland water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.