Abstract

Inhibition of bovine brain hexokinase by its product, glucose 6-phosphate, is considered to be a major regulatory step in controlling the glycolytic flux in the brain. Investigations on the molecular basis of this regulation, i.e. allosteric or product inhibition, have led to various proposals. Here, we attempt to resolve this issue by ascertaining the location of the binding sites for glucose and glucose 6-phosphate on the enzyme with respect to a divalent-cation-binding site characterized previously [Jarori, G. K., Kasturi, S. R. & Kenkare, U. W. (1981) Arch. Biochem. Biophys. 211, 258-268]. The paramagnetic effect of enzyme-bound Mn(II) on the spin-lattice relaxation rates (T-1(1] of ligand nuclei (1H and 31P) in E.Mn(II).Glc and E.Mn(II).Glc6P complexes have been measured. The paramagnetic effect of Mn(II) on the proton relaxation rates of C1-H alpha, C1-H beta and C2-H beta of glucose in the E.Mn(II).Glc complex was measured at 270 MHz and 500 MHz. The temperature dependence of these rates was also studied in the range of 5-30 degrees C at 500 MHz. The ligand nuclear relaxation rates in E.Mn(II).Glc are field-dependent and the Arrhenius plot yields an activation energy (delta E) of 16.7-20.9 kJ/mol. Similar measurements have also been carried out on C1-H alpha, C1-H beta and C6-31P at 270 MHz (1H) and 202.5 MHz (31P) for the E.Mn(II).Glc6P complex. The temperature dependence of 31P relaxation rates in this complex was measured in the range 5-30 degrees C, which yielded delta E = 9.2 kJ/mol. The electron-nuclear dipolar correlation time (tau c), determined from the field-dependent measurements of proton relaxation rates in the E.Mn(II).Glc complex, is 0.22-1.27 ns. The distances determined between Mn(II) and C1-H of glucose and glucose 6-phosphate are approximately 1.1 nm and approximately 0.8 nm, respectively. These data, considered together with our recent results [Mehta, A., Jarori, G. K. & Kenkare, U. W. (1988) J. Biol. Chem. 263, 15492-15498], suggest that glucose and glucose 6-phosphate may bind to very nearly the same region of the enzyme. The structure of the binary Glc6P.Mn(II) complex has also been determined. The phosphoryl group of the sugar phosphate forms a first co-ordination complex with the cation. However, on the enzyme, the phosphoryl group is located at a distance of approximately 0.5-0.6 nm from the cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.