Abstract

The equine lentivirus receptor 1 (ELR1), a member of the tumor necrosis factor receptor (TNFR) protein family, has been identified as a functional receptor for equine infectious anemia virus (EIAV). Toward defining the functional interactions between the EIAV SU protein (gp90) and its ELR1 receptor, we mapped the gp90 binding domain of ELR1 by a combination of binding and functional assays using the EIAV SU gp90 protein and various chimeric receptor proteins derived from exchanges between the functional ELR1 and the nonbinding homolog, mouse herpesvirus entry mediator (murine HveA). Complementary exchanges of the respective cysteine-rich domains (CRD) between the ELR1 and murine HveA proteins revealed CRD1 as the predominant determinant of functional gp90 binding to ELR1 and also to a chimeric murine HveA protein expressed on the surface of transfected Cf2Th cells. Mutations of individual amino acids in the CRD1 segment of ELR1 and murine HveA indicated the Leu70 in CRD1 as essential for functional binding of EIAV gp90 and for virus infection of transduced Cf2Th cells. The specificity of the EIAV SU binding domain identified for the ELR1 receptor is fundamentally identical to that reported previously for functional binding of feline immunodeficiency virus SU to its coreceptor CD134, another TNFR protein. These results indicate unexpected common features of the specific mechanisms by which diverse lentiviruses can employ TNFR proteins as functional receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.