Abstract

BackgroundBovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. The bovine major histocompatibility complex class II region plays a key role in the subclinical progression of BLV infection. In this study, we aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle.MethodsWe examined five Japanese Black cattle, including three disease-susceptible animals, one disease-resistant animal, and one normal animal, classified according to genotyping of bovine leukocyte antigen (BoLA)-DRB3 and BoLA-DQA1 alleles using polymerase chain reaction sequence-based typing methods. All cattle were inoculated with BLV-infected blood collected from BLV experimentally infected cattle and then subjected to CD4+ T-cell epitope mapping by cell proliferation assays.ResultsFive Japanese Black cattle were successfully infected with BLV, and CD4+ T-cell epitope mapping was then conducted. Disease-resistant and normal cattle showed low and moderate proviral loads and harbored six or five types of CD4+ T-cell epitopes, respectively. In contrast, the one of three disease-susceptible cattle with the highest proviral load did not harbor CD4+ T-cell epitopes, and two of three other cattle with high proviral loads each had only one epitope. Thus, the CD4+ T-cell epitope repertoire was less frequent in disease-susceptible cattle than in other cattle.ConclusionAlthough only a few cattle were included in this study, our results showed that CD4+ T-cell epitopes may be associated with BoLA-DRB3-DQA1 haplotypes, which conferred differential susceptibilities to BLV proviral loads. These CD4+ T-cell epitopes could be useful for the design of anti-BLV vaccines targeting disease-susceptible Japanese Black cattle. Further studies of CD4+ T-cell epitopes in other breeds and using larger numbers of cattle with differential susceptibilities are required to confirm these findings.

Highlights

  • Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma

  • Two of these three cattle were homozygous for DRB3*1601 and bovine leukocyte antigen (BoLA)-DQA1*10012, which are associated with a high proviral load [16], and one was homozygous for DRB3*1601 and heterozygous for BoLA-DQA1*10012

  • The resistant animal (R1) carried the BoLADQA1*0204 allele, which is related to a low proviral load [16], and the normal animal (N1) did not harbor the known BoLA-DRB3 or BoLA-DQA1 alleles, which are associated with BLV proviral load

Read more

Summary

Introduction

Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. We aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle. Bovine leukemia virus (BLV) is closely related to human T-cell leukemia virus types 1 and 2, and is associated with enzootic bovine leukosis, a common neoplastic disease in cattle [1, 2]. Gatei et al [5] conducted epitope mapping in sheep, cows, and calves. They found two other gp CD4+ T-cell epitopes: peptide 51–70 and peptide 61–80. Only two proteins, gp and p24, have been studied as CD4+ T-cell epitopes using the natural host of BLV

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call