Abstract

BackgroundCommon bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse.ResultsQTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance.ConclusionsThe results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.

Highlights

  • Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%

  • The objective of this study was to identify quantitative trait loci (QTL) that impart resistant to ALS by means of resistance quantitative analysis of 346 recombinant inbreed lines (RILs) derived from the IAC-UNA x CAL 143 (UC) cross

  • Statistical analysis of disease severity data Angular necrotic spots, which are typical of the disease, were seen in the more susceptible RILs 10 days after inoculation on plants growing in the greenhouse and 30 days after sowing, in plants grown in the field

Read more

Summary

Introduction

Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. The common bean (Phaseolus vulgaris L.) is an important source for human diet of protein, complex carbohydrates, fiber, isoflavones [1] and minerals such as iron and phosphorus [2] This crop is cultivated in various countries around the world, among which Brazil stands out as the Several factors affect bean yield, among which the incidence of diseases is the biggest one. Infection occurs due to conidia that penetrate through both the leaf epidermis and stomata, about three to seven days after inoculation [8] It is a biotrophic fungus in the early stages of infection, which becomes necrotrophic, when the attack causes the characteristic symptoms of the disease, which are angular necrotic spots limited by the leaf veins [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call