Abstract
Nanoindentation experiments are performed using an atomic force microscope (AFM) to quantify the spatial distribution of mechanical properties of plant cell walls at nanometre length scales. At any specific location on the cell wall, a complex (non-linear) force-indentation response occurs that can be deconvoluted using a unique multiregime analysis (MRA). This allows an unambiguous evaluation of the local transverse elastic modulus of the wall. Nanomechanical measurements on suspension-cultured cells (SCCs), derived from Italian ryegrass (Lolium multiflorum) starchy endosperm, show three characteristic modes of deformation and a spatial distribution of elastic moduli across the surface. 'Soft' and 'hard' domains are found across length scales between 0.1 µm and 3 µm, which is well above a typical pore size of the polysaccharide mesh. The generality and wider applicability of this mechanical heterogeneity is verified through in planta characterization on leaf epidermal cells of Arabidopsis thaliana and L. multiflorum The outcomes of this research provide a basis for uncovering and quantifying the relationships between local wall composition, architecture, cell growth, and/or morphogenesis.
Highlights
Measuring mechanical properties of cell walls presents a significant but important challenge
We examine the mechanical properties of plant cell walls using suspension-cultured cells (SCCs) derived from Italian ryegrass (Lolium multiflorum) starchy endosperm
The results suggest that the domain structure of mechanical heterogeneity at the micrometre level is an inherent property of plant cells and tissues, and may have significant repercussions for our understanding of cell growth and morphogenesis
Summary
Measuring mechanical properties of cell walls presents a significant but important challenge. Nanoindentation experiments are performed using an atomic force microscope (AFM) to quantify the spatial distribution of mechanical properties of plant cell walls at nanometre length scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.