Abstract
Population level analysis of medical imaging data relies on finding spatial correspondence across individuals as a basis for local comparison of visual characteristics. Here, we describe and evaluate a framework to normalize routine images covering different parts of the human body, in different modalities to a common reference space. The framework performs two basic steps towards normalization: (1) The identification of the location and coverage of the human body by an image and (2) a non-linear mapping to the common reference space. Based on these mappings, either coordinates, or label-masks can be transferred across a population of images. We evaluate the framework on a set of routine CT and MR scans exhibiting large variability on location and coverage. A set of manually annotated landmarks is used to assess the accuracy and stability of the approach. We report distinct improvement in stability and registration accuracy compared to a classical single-atlas approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.