Abstract

Magnetic couplers (MC) are the key element that enable the power transfer over large air gaps in inductive power transfer (IPT) systems. Numerous designs with different coil and core arrangements have been proposed in the literature. However, the MC sizing process still involves several trial and error iterations to meet the desired specifications. This paper presents a profile methodology that uses fitting equations to extrapolate the coupling profiles and minimize the required number of finite element analysis (FEA) simulation results. A non-polarized circular coupler (FLCP) can be characterized as function of the air gap and lateral displacements using only six charging positions, whereas polarized couplers, such as the bipolar (BPP) or double-D pad (DDP), can be characterized using 18 charging positions. The methodology is validated experimentally using the FLCP, and an average error of 3% was found under different charging positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.