Abstract
Managing saline water discharges from mining operations is a global environmental challenge. Measuring the location and extent of surface efflorescence can indicate solute movement before changes in electrical conductivity (EC) are detected in waterways. We hypothesised through the use of a case study that ground-based reflectance spectrometry and airborne hyperspectral (450–2500 nm) analysis of surface efflorescence could be a rapid method for monitoring large regions of the surrounding environment, including downstream of remote mines. X-ray diffraction and X-ray fluorescence were used to determine mineralogy and elemental composition of surface salts around a uranium mine. Salt samples were found to be mixtures of magnesium sulfate. The reflectance of field spectra varied depending on the hydration of the mineral, mainly hexahydrite and starkeyite. A constrained energy minimisation technique was used to match the field reflectance spectra to the airborne data. Airborne matches were confirmed at the field sampling sites and surrounds. Salts were also detected at lower matches at mine water irrigation areas where excess mine water had previously been applied. Hence, hyperspectral remote sensing is a potentially rapid and sensitive method for mapping magnesium sulfates over large areas in operating and rehabilitated mines. It was successfully demonstrated as a tool for monitoring and assessment of efflorescence as a result of saline processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.