Abstract

The performance of organic solar cells is highly dependent on film morphology. However, directly correlating local film structures with device performance remains challenging. We demonstrate that photoconductive atomic force microscopy (pcAFM) can be used to map local photocurrents with 20 nm resolution in donor/acceptor blend solar cells of the conjugated polymer poly[2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylene vinylene] (MDMO-PPV) with the fullerene (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) spin-coated from various solvents. We present photocurrent maps under short-circuit conditions (zero applied bias) as well as under various applied voltages. We find significant variation in the short-circuit current between regions that appear identical in AFM topography. These variations occur from one domain to another as well as on larger length scales incorporating multiple domains. These results suggest that the performance of polymer-fullerene blends can still be improved through better control of morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.