Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.