Abstract
Two-dimensional terahertz-terahertz-Raman spectroscopy can provide insight into the anharmonicities of low-energy phonon modes-knowledge of which can help develop strategies for coherent control of material properties. Measurements on LiNbO_{3} reveal THz and Raman nonlinear transitions between the E(TO_{1}) and E(TO_{3}) phonon polaritons. Distinct coherence pathways are observed with different THz polarizations. The observed pathways suggest that the origin of the third-order nonlinear responses is due to mechanical anharmonicities, as opposed to electronic anharmonicities. Further, we confirm that the E(TO_{1}) and E(TO_{3}) phonon polaritons are excited through resonant one-photon THz excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.