Abstract

Extracts of passive air samples collected from 15 passive sampling network sites across the Athabasca Oil Sands region were used to explore the application of in vitro assays for mutagenicity (Salmonella mutation assays) and cytotoxicity (lactate dehydrogenase assay) to assess the toxicity of the air mixture. The air monitoring of polycyclic aromatic compounds (PACs) and PAC transformation products, including nitrated polycyclic aromatic hydrocarbons (NPAHs) and oxygenated polycyclic aromatic hydrocarbons (OPAHs) was then linked to the potential toxicity of air. The PACs in air during April to May 2014 were elevated near mining activities and declined with distance from the source region, whereas NPAHs and OPAHs exhibited a more variable spatial distribution with the highest levels in Fort McMurray. Overall, the air samples exhibited a weak mutagenicity. The highest indirect-acting mutagenicity was observed for sites closest to mining activities; however, the indirect-acting mutagenicity did not decline sharply with distance from mining areas. Indirect-acting mutagenicity was strongly correlated with levels of total PACs, benzo(a)pyrene equivalent mass, and OPAHs. Most of the samples exhibited cytotoxic potential, but the magnitude of the response was variable across the sample region and did not correlate with levels of target analytes. This indicates that PACs and PAC derivatives were not a major contributor to the cytotoxicity observed in the air samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.