Abstract
We study the dual relationship between quantum group convolution maps L1(G)âLâ(G) and completely bounded multipliers of GË. For a large class of locally compact quantum groups G, we completely isomorphically identify the mapping ideal of row Hilbert space factorizable convolution maps with Mcb(L1(GË)), yielding a quantum Gilbert representation for completely bounded multipliers. We also identify the mapping ideals of completely integral and completely nuclear convolution maps, the latter coinciding with â1(bGË), where bG is the quantum Bohr compactification of G. For quantum groups whose dual has bounded degree, we show that the completely compact convolution maps coincide with C(bG). Our techniques comprise a mixture of operator space theory and abstract harmonic analysis, including Fubini tensor products, the non-commutative Grothendieck inequality, quantum Eberlein compactifications, and a suitable notion of inner co-amenable quantum group, that we introduce and for which we exhibit examples from the bicrossed product construction. Our main results are new even in the setting of group von Neumann algebras VN(G) for quasi-SIN locally compact groups G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.