Abstract
Let FP(X) be the free paratopological group over a topological space X. For each nonnegative integer n ? N, denote by FPn(X) the subset of FP(X) consisting of all words of reduced length at most n, and in by the natural mapping from (X ? X?1 ? {e})n to FPn(X). We prove that the natural mapping i2:(X ? X?1 d ?{e})2 ? FP2(X) is a closed mapping if and only if every neighborhood U of the diagonal ?1 in Xd x X is a member of the finest quasi-uniformity on X, where X is a T1-space and Xd denotes X when equipped with the discrete topology in place of its given topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.