Abstract
PurposeTo cross-validate T1-weighted oxygen-enhanced (OE) MRI measurements of tumor hypoxia with intrinsic susceptibility MRI measurements and to demonstrate the feasibility of translation of the technique for patients.Materials and MethodsPreclinical studies in nine 786–0-R renal cell carcinoma (RCC) xenografts and prospective clinical studies in eight patients with RCC were performed. Longitudinal relaxation rate changes (∆R1) after 100% oxygen inhalation were quantified, reflecting the paramagnetic effect on tissue protons because of the presence of molecular oxygen. Native transverse relaxation rate (R2*) and oxygen-induced R2* change (∆R2*) were measured, reflecting presence of deoxygenated hemoglobin molecules. Median and voxel-wise values of ∆R1 were compared with values of R2* and ∆R2*. Tumor regions with dynamic contrast agent–enhanced MRI perfusion, refractory to signal change at OE MRI (referred to as perfused Oxy-R), were distinguished from perfused oxygen-enhancing (perfused Oxy-E) and nonperfused regions. R2* and ∆R2* values in each tumor subregion were compared by using one-way analysis of variance.ResultsTumor-wise and voxel-wise ∆R1 and ∆R2* comparisons did not show correlative relationships. In xenografts, parcellation analysis revealed that perfused Oxy-R regions had faster native R2* (102.4 sec–1 vs 81.7 sec–1) and greater negative ∆R2* (−22.9 sec–1 vs −5.4 sec–1), compared with perfused Oxy-E and nonperfused subregions (all P < .001), respectively. Similar findings were present in human tumors (P < .001). Further, perfused Oxy-R helped identify tumor hypoxia, measured at pathologic analysis, in both xenografts (P = .002) and human tumors (P = .003).ConclusionIntrinsic susceptibility biomarkers provide cross validation of the OE MRI biomarker perfused Oxy-R. Consistent relationship to pathologic analyses was found in xenografts and human tumors, demonstrating biomarker translation.Published under a CC BY 4.0 license.Online supplemental material is available for this article.
Highlights
Tional Cancer Research Institute guidelines for animal welfare in cancer research [28]
Consistent relationship to pathologic analyses was found in xenografts and human tumors, demonstrating biomarker translation
Hypoxia results from an imbalance between oxygen delivery and demand [1]
Summary
Preclinical studies in nine 786–0-R renal cell carcinoma (RCC) xenografts and prospective clinical studies in eight patients with RCC were performed. Longitudinal relaxation rate changes (∆R1) after 100% oxygen inhalation were quantified, reflecting the paramagnetic effect on tissue protons because of the presence of molecular oxygen. Native transverse relaxation rate (R2*) and oxygen-induced R2* change (∆R2*) were measured, reflecting presence of deoxygenated hemoglobin molecules. Median and voxel-wise values of ∆R1 were compared with values of R2* and ∆R2*. Tumor regions with dynamic contrast agent– enhanced MRI perfusion, refractory to signal change at OE MRI (referred to as perfused Oxy-R), were distinguished from perfused oxygen-enhancing (perfused Oxy-E) and nonperfused regions. R2* and ∆R2* values in each tumor subregion were compared by using one-way analysis of variance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.