Abstract
IgE Abs drive the symptoms of allergic disease upon cross-linking allergens on mast cells or basophils. If the IgE binding sites on the allergens could be identified, it may be useful for creating new forms of immunotherapy. However, direct knowledge of the human IgE (hIgE) epitopes is limited because of the very low frequency of IgE-producing B cells in blood. A new hybridoma technology using human B cells from house dust mite-allergic patients was used to identify four Der p 2-specific hIgE mAbs. Their relative binding sites were assessed and compared by immunoassays with three previously studied murine IgG mAbs. Immunoassays showed that the recognition of Der p 2 by the first three hIgE was inhibited by a single murine IgG, but the fourth hIgE recognized a different epitope from all the other mAbs. The functional ability of the hIgE that bind different epitopes to cross-link Der p 2 was demonstrated in a mouse model of passive systemic anaphylaxis. Nuclear magnetic resonance analyses of Der p 2 in complex with IgG and IgE Abs were used to identify specific residues in the epitopes. To our knowledge, the combination of immunoassays to distinguish overlapping epitopes and nuclear magnetic resonance analyses to identify specific residues involved in Ab binding provided the first epitope mapping of hIgE mAbs to an allergen. The technologies developed in this study will be useful in high-resolution mapping of human epitopes on other Ags and the design of improved therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.