Abstract

Greenhouse gas (GHG) emissions resulting from the Land Use, Land-Use Change, and Forestry sector (LULUCF) are estimated and reported in National Communications to the United Nations Framework Convention on Climate Change (UNFCCC). By definition, the LULUCF sector is a “greenhouse gas (GHG) inventory sector that covers emissions and removals of greenhouse gases resulting from direct human-induced land use, land-use change and forestry activities”. In principle, the annual GHG national inventory should be transparent, consistent, comparable, complete, and accurate. Also, it should be able to systematically account for all changes in land use and forest cover over many years. In this context, it is essential to investigate the development of an automated approach for mapping local GHG emissions/removals from the LULUCF sector for integration at the national level. In view of that, the aim of this work was to develop a semi-automated model for estimating GHG emissions and removals form the LULUCF sector at the local level. The specific objectives were to 1) map changes in land use and forest cover between two consecutive years, and 2) assess GHG emissions and removals from the LULUCF sector. The methodology of work comprised the use of Geographic Object-Based Image Analysis (GEOBIA) for modelling changes in the LULUCF sector and, subsequently, estimating GHG emissions/removals between two consecutive years. The combined use of Very High Resolution (VHR) SPOT imagery (2.5 m colour) and field data was involved in identifying and mapping land-use changes between 2014 and 2015. Subsequently, GHG emissions and removals were estimated using customized features in GEOBIA and following the 2003 Intergovernmental Panel on Climate Change “Good Practice Guidance for Land Use, Land-Use Change and Forestry”, which adopts a land use category-based approach to estimate emissions/removals from all land categories and all relevant GHGs. An accuracy assessment of the initial classification was conducted with the use of reference data. The overall classification accuracy of the LULUCF mapping in 2014 was found to be 83%, while the Kappa Index of Agreement (KIA) was 0.74. The developed GEOBIA model estimated for the year 2015 net annual GHG removals of -1.613 Gg of CO2 eq. (i.e., an approximate increase of 12.7% in removals between 2014 and 2015). Future work will involve further development of the model to account for all possible changes in the LULUCF sector and test the transferability of the model to other sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.