Abstract
Quantum annealing provides a method to solve combinatorial optimization problems in complex energy landscapes by exploiting thermal fluctuations that exist in a physical system. This work introduces the mapping of a graph coloring problem based on pseudo-Boolean constraints to a working graph of the D-Wave Systems Inc. We start from the problem formulated as a set of constraints represented in propositional logic. We use the SATyrus approach to transform this set of constraints to an energy minimization problem. We convert the formulation to a quadratic unconstrained binary optimization problem (QUBO), applying polynomial reduction when needed, and solve the problem using different approaches: (a) classical QUBO using simulated annealing in a von Neumann machine; (b) QUBO in a simulated quantum environment; (c) actual quantum 1, QUBO using the D-Wave quantum machine and reducing polynomial degree using a D-Wave library; and (d) actual quantum 2, QUBO using the D-Wave quantum machine and reducing polynomial degree using our own implementation. We study how the implementations using these approaches vary in terms of the impact on the number of solutions found (a) when varying the penalties associated with the constraints and (b) when varying the annealing approach, simulated (SA) versus quantum (QA). Results show that both SA and QA produce good heuristics for this specific problem, although we found more solutions through the QA approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.