Abstract

One of the outstanding and fundamental questions in physics is the quantitative understanding of the confinement of quarks and gluons in quantum chromodynamics (QCD). Confinement is a unique feature of QCD. Exotic hybrid mesons manifest gluonic degrees of freedom and their spectroscopy will provide the crucial data needed to test assumptions in lattice QCD and phenomenology leading to confinement. Photoproduction is expected to be particularly effective in producing exotic hybrids but data using photon probes are sparse. At Jefferson Lab, plans are underway to use the coherent bremsstrahlung technique to produce a linearly polarized photon beam. A solenoid-based hermetic detector will be used to collect data on meson production and decays with statistics that will exceed the current photoproduction data in hand by several orders of magnitude after the first year of running. In order too reach the ideal photon energy of 9 GeV/c for this mapping of the exotic spectra, the energy of the Jefferson Lab electron accelerator, CEBAF, will be doubled from its current maximum of 6 GeV to 12 GeV. The physics and project are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.