Abstract

Children with medically refractory epilepsy (MRE) require resective neurosurgery to achieve seizure freedom, whose success depends on accurate delineation of the epileptogenic zone (EZ). Functional connectivity (FC) can assess the extent of epileptic brain networks since intracranial EEG (icEEG) studies have shown its link to the EZ and predictive value for surgical outcome in these patients. Here, we propose a new noninvasive method based on magnetoencephalography (MEG) and high-density (HD-EEG) data that estimates FC metrics at the source level through an "implantation" of virtual sensors (VSs). We analyzed MEG, HD-EEG, and icEEG data from eight children with MRE who underwent surgery having good outcome and performed source localization (beamformer) on noninvasive data to build VSs at the icEEG electrode locations. We analyzed data with and without Interictal Epileptiform Discharges (IEDs) in different frequency bands, and computed the following FC matrices: Amplitude Envelope Correlation (AEC), Correlation (CORR), and Phase Locking Value (PLV). Each matrix was used to generate a graph using Minimum Spanning Tree (MST), and for each node (i.e., each sensor) we computed four centrality measures: betweenness, closeness, degree, and eigenvector. We tested the reliability of VSs measures with respect to icEEG (regarded as benchmark) via linear correlation, and compared FC values inside vs. outside resection. We observed higher FC inside than outside resection (p<0.05) for AEC [alpha (8-12 Hz), beta (12-30 Hz), and broadband (1-50 Hz)] on data with IEDs and AEC theta (4-8 Hz) on data without IEDs for icEEG, AEC broadband (1-50 Hz) on data without IEDs for MEG-VSs, as well as for all centrality measures of icEEG and MEG/HD-EEG-VSs. Additionally, icEEG and VSs metrics presented high correlation (0.6-0.9, p<0.05). Our data support the notion that the proposed method can potentially replicate the icEEG ability to map the epileptogenic network in children with MRE.Clinical Relevance - The estimation of FC with noninvasive techniques, such as MEG and HD-EEG, via VSs is a promising tool that would help the presurgical evaluation by delineating the EZ without waiting for a seizure to occur, and potentially improve the surgical outcome of patients with MRE undergoing surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call