Abstract
Accurate estimates of surface soil moisture are essential in many research fields, including agriculture, hydrology, and meteorology. The objective of this study was to evaluate two remote-sensing methods for mapping the soil moisture of a bare soil, namely, L-band radiometry using brightness temperature and ground-penetrating radar (GPR) using surface reflection inversion. Invasive time-domain reflectometry (TDR) measurements were used as a reference. A field experiment was performed in which these three methods were used to map soil moisture after controlled heterogeneous irrigation that ensured a wide range of water content. The heterogeneous irrigation pattern was reasonably well reproduced by both remote-sensing techniques. However, significant differences in the absolute moisture values retrieved were observed. This discrepancy was attributed to different sensing depths and areas and different sensitivities to soil surface roughness. For GPR, the effect of roughness was excluded by operating at low frequencies (0.2-0.8 GHz) that were not sensitive to the field surface roughness. The root mean square (rms) error between soil moisture measured by GPR and TDR was 0.038 m3·m-3. For the radiometer, the rms error decreased from 0.062 (horizontal polarization) and 0.054 (vertical polarization) to 0.020 m3·m-3 (both polarizations) after accounting for roughness using an empirical model that required calibration with reference TDR measurements. Monte Carlo simulations showed that around 20% of the reference data were required to obtain a good roughness calibration for the entire field. It was concluded that relatively accurate measurements were possible with both methods, although accounting for surface roughness was essential for radiometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.