Abstract

Mapping the location and extent of forest at risk from damaging agents or processes assists forest managers in prioritizing their planning and operational mitigation activities. In Australia, Bell Miner Associated Dieback (BMAD) refers to a form of canopy decline observed in eucalypt crowns occupied by colonies of bell miners ( Manorina melanophrys). High densities of bell miners are associated with decreased avian abundance and diversity and an increase in psyllid abundance on crown foliage. BMAD has recently been nominated as a key threatening process in New South Wales (NSW). Consequently, a modelling system for predicting bell miner distribution in coastal eucalypt forests of NSW has been developed. The presence or absence of bell miners was recorded in 130 plots located within a 12,800 ha catchment study area containing a range of eucalypt forest types. The modelling system was produced by integrating a machine learning software suite (WEKA), and the statistical software R within the geographic resources analysis support system (GRASS) geographical information system (GIS). The variable modelled was the binary variable: presence or absence of bell minors. Six modelling techniques (Logistic regression; generalised additive models; two tree-based ensemble classification algorithms, random forest and Adaboost and Neural Networks) were integrated with airborne laser scanning; SPOT 5 and topographic derived variables. Model evaluation and parameter selection were measured by three threshold dependent measures (sensitivity, specificity and kappa) and the threshold independent Receiver Operator Curve (ROC) analysis. The final presence and absence maps were obtained through maximisation of the kappa statistic and applied at a resolution of 10 m across the entire catchment study area. For this data set, the most accurate algorithm for predicting the distribution of bell miner colonies was random forest (kappa = 0.84; ROC area under curve = 0.97). Variables most commonly selected in the six models were the laser scanning metrics; coefficient of variation, skewness, and the 10th and 90th percentiles derived from the shape of the height frequency distribution which, in turn, is directly influenced by vertical structure of the forest. An image textural statistic based on the shortwave infrared (SWIR) band of SPOT 5 was also commonly selected by the models. The SWIR band is sensitive to vegetation and soil moisture content. These models predicted that forest stands with a sparse eucalypt canopy over a moist, dense understorey were susceptible to being colonised by bell miners and hence BMAD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.