Abstract

AbstractAll global circulation models based on Intergovernmental Panel on Climate Change (IPCC) scenarios project profound changes, but there is no consensus on how to map their environmental consequences. Our multivariate representation of environmental space combines stable topographic and edaphic attributes with dynamic climatic attributes. We divide that environmental space into 500 unique domains and map their current locations and their projected locations in 2100 under contrasting emissions scenarios. The environmental domains found across half the study area today disappear under the higher emissions scenario, but persist somewhere in it under the lower emissions scenario. Locations affected least and those affected most under each scenario are mapped. This provides an explicit framework for designing conservation networks to include both areas at least risk (potential refugia) and areas at greatest risk, where novel communities may form and where sentinel ecosystems can be monitored for signs of stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.