Abstract

Two-dimensional superconductors have attracted growing interest because of their scientific novelty, structural tunability, and useful properties. Studies of their magnetic responses, however, are often hampered by difficulties to grow large-size samples of high quality and uniformity. We report here an imaging method that employed NV- centers in diamond as a sensor capable of mapping out the microwave magnetic field distribution on an ultrathin superconducting film of micron size. Measurements on a 33 nm thick film and a 125 nm thick bulklike film of Bi2Sr2CaCu2O8+δ revealed that the alternating current (ac) Meissner effect (or repulsion of ac magnetic field) set in at 78 and 91 K, respectively; the latter was the superconducting transition temperature of both films. The unusual ac magnetic response of the thin film presumably was due to thermally excited vortex-antivortex diffusive motion in the film. Spatial resolution of our ac magnetometer was limited by optical diffraction and the noise level was at 14 μT/Hz1/2. The technique could be extended with better detection sensitivity to extract local ac conductivity/susceptibility of ultrathin or monolayer superconducting samples as well as ac magnetic responses of other two-dimensional exotic thin films of limited lateral size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.