Abstract

Particle tracking microrheology (PTM) has recently been employed as a non-destructive way to longitudinally track physical changes in 3D pancreatic tumor co-culture models concomitant with tumor growth and invasion into the extracellular matrix (ECM). While the primary goal of PTM is to quantify local viscoelasticity via the Generalized Stokes-Einstein Relation (GSER), a more simplified way of describing local tissue mechanics lies in the tabulation and subsequent visualization of the spread of probe displacements in a given field of view. Proper analysis of this largely untapped byproduct of standard PTM has the potential to yield valuable insight into the structure and integrity of the ECM. Here, we use clustering algorithms in R to analyze the trajectories of probes in 3D pancreatic tumor/fibroblast co-culture models in an attempt to differentiate between probes that are effectively constrained by the ECM and/or contractile traction forces, and those that exhibit uninhibited mobility in local water-filled pores. We also discuss the potential pitfalls of this method. Accurately and reproducibly quantifying the boundary between these two categories of probe behavior could result in an effective method for measuring the average pore size in a given region of ECM. Such a tool could prove useful for studying stromal depletion, physical impedance to drug delivery, and degradation due to cellular invasion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call