Abstract

ABSTRACT The Sun is located close to the Galactic mid-plane, meaning that we observe the Galaxy through significant quantities of dust. Moreover, the vast majority of the Galaxy’s stars also lie in the disc, meaning that dust has an enormous impact on the massive astrometric, photometric and spectroscopic surveys of the Galaxy that are currently underway. To exploit the data from these surveys we require good three-dimensional maps of the Galaxy’s dust. We present a new method for making such maps in which we form the best linear unbiased predictor of the extinction at an arbitrary point based on the extinctions for a set of observed stars. This method allows us to avoid the artificial inhomogeneities (so-called ‘fingers of God’) and resolution limits that are characteristic of many published dust maps. Moreover, it requires minimal assumptions about the statistical properties of the interstellar medium. In fact, we require only a model of the first and second moments of the dust density field. The method is suitable for use with directly measured extinctions, such as those provided by the Rayleigh–Jeans colour excess method, and inferred extinctions, such as those provided by hierarchical Bayesian models like StarHorse. We test our method by mapping dust in the region of the giant molecular cloud Orion A. Our results indicate a foreground dust cloud at a distance of 350 pc, which has been identified in work by another author.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.