Abstract
Clinical dose calculations are often performed by scaling distances from a dose distribution measured in one medium to calculate the dose in another. These perturbation calculations have the mathematical form of a mapping. In this paper we identify five conditions required for particle transport to reduce to this form and develop a new mapping for electrons which approximately satisfies these conditions. This continuous scattering mapping is based on two parameters, the scattering power of the medium which determines the shape of the scaling paths, and the stopping power of the medium which determines where the energy is deposited along these paths. Pencil beam dose distributions are calculated with EGS4 in one medium and mapped to other media. The resultant distributions are compared with EGS4 calculations done directly in the second medium. The accuracy of the mapping algorithm is shown to be superior to both linear density scaling and the MDAH electron pencil beam algorithm [Kenneth R. Hogstrom, Michael D. Mills, and Peter R. Almond, "Electron beam dose calculations," Phys. Med. Biol. 26, 445-459 (1981)] for pencil beams in homogeneous media and inhomogeneous phantoms (both slab and nonslab geometries) for a variety of materials of clinical interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.