Abstract
Countrywide winter and summer Sentinel-1 (S1) backscatter data, cloud-free summer Sentinel-2 (S2) images, an Airborne Laser Scanning (ALS)-based Digital Terrain Model (DTM) and a forest mask were used to model and subsequently map Dominant Leaf Type (DLT) with the thematic classes broadleaved and coniferous trees for the whole of Switzerland. A novel workflow was developed that is robust, cost-efficient and highly automated using reference data from aerial image interpretation. Two machine learning approaches based on Random Forest (RF) and deep learning (UNET) for the whole country with three sets of predictor variables were applied. 24 subareas based on aspect and slope categories were applied to explore effects of the complex mountainous topography on model performances. The reference data split into training, validation and test data sets was spatially stratified using a 25 km regular grid. Model accuracies of both RF and UNET were generally highest with Kappa (K) around 0.95 when predictors were included from both S1/S2 and the topographic variables aspect, elevation and slope from the DTM. While only slightly lower accuracies were obtained when using S2 and DTM data, lowest accuracies were obtained when only predictors from S1 and DTM were included, with RF performing worse than UNET. While on countrywide level RF and UNET performed overall similarly, substantial differences in model performances, i.e. higher variances and lower accuracies, were found in subareas with northwest to northeast orientations. The combined use of S1/S2 and DTM predictors mitigated these problems related to topography and shadows and was therefore superior to the single use of S1 and DTM or S2 and DTM data. The comparison with independent National Forest Inventory (NFI) plot data demonstrated precisions of K around 0.6 in the predictions of DLT and indicated a trend of increasing deviations in mixed forests. A comparison with the Copernicus High Resolution Layer (HRL) DLT 2018 revealed overall higher map accuracies with the exception of pure broadleaved forest. Although, spatial patterns of DTL were overall similar, UNET performed better than RF in areas with a distinct DLT on forest stand level, with the largest differences occurring when only S1 and DTM data was used. In contrast, predictions obtained from RF were more accurate in mixed stands. This study goes beyond the case study level and meets the requirements of countrywide data sets, in particular regarding repeatability, updating, costs and characteristics of training data sets. The 10 m countrywide DLT maps add complementary and spatially explicit information to the existing NFI estimates and are thus highly relevant for forestry practice and other related fields.
Highlights
Large-area wall-to-wall maps on forest composition, as well as changes over time, are frequently required in the forestry sector and beyond
Our study further demonstrates that time series are not a prerequisite to distinguish between the classes broadleaved and coniferous
High-quality Dominant Leaf Type (DLT) maps with the two classes broadleaved and coniferous were produced for the whole of Switzerland (41,000 km2)
Summary
Large-area wall-to-wall maps on forest composition, as well as changes over time, are frequently required in the forestry sector and beyond. Such spatially explicit maps are indispensable for countrywide sustainable forest management strategies (MacDicken et al, 2015; Satir et al, 2017), biodiversity (Vihervaara et al, 2017) and biomass (Price et al, 2020) assessments, and appraisal of forest conditions – particu larly in a changing climate (Keenan, 2015). Maps or remotely sensed products could help to improve estimates for forest inventories (McRoberts, 2010; Vidal et al, 2016). With the Copernicus High Resolution Layers (HRL) (EEA, 2018; 2021) products a trend reversal was introduced in Europe
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.