Abstract

We demonstrate, by means of a convolutional neural network, that the features learned in the two-dimensional Ising model are sufficiently universal to predict the structure of symmetry-breaking phase transitions in considered systems irrespective of the universality class, order, and the presence of discrete or continuous degrees of freedom. No prior knowledge about the existence of a phase transition is required in the target system and its entire parameter space can be scanned with multiple histogram reweighting to discover one. We establish our approach in q-state Potts models and perform a calculation for the critical coupling and the critical exponents of the ϕ^{4} scalar field theory using quantities derived from the neural network implementation. We view the machine learning algorithm as a mapping that associates each configuration across different systems to its corresponding phase and elaborate on implications for the discovery of unknown phase transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.