Abstract

We characterize those compact subsets of the plane which have mapping cylinder neighborhoods, describe the neighborhood closures, and show that such neighborhood closures are topologically unique. The proofs employ the notion of prime ends. We also show that if U U is a mapping cylinder neighborhood of a pointlike continuum in S 3 {S^3} , then U ¯ \overline U is a 3 3 -cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.