Abstract
The importance of mapping regional and global cropland distribution in timely ways has been recognized, but separation of crop types and multiple cropping patterns is challenging due to their spectral similarity. This study developed a new approach to identify crop types (including soy, cotton and maize) and cropping patterns (Soy-Maize, Soy-Cotton, Soy-Pasture, Soy-Fallow, Fallow-Cotton and Single crop) in the state of Mato Grosso, Brazil. The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series data for 2015 and 2016 and field survey data were used in this research. The major steps of this proposed approach include: (1) reconstructing NDVI time series data by removing the cloud-contaminated pixels using the temporal interpolation algorithm, (2) identifying the best periods and developing temporal indices and phenological parameters to distinguish croplands from other land cover types, and (3) developing crop temporal indices to extract cropping patterns using NDVI time-series data and group cropping patterns into crop types. Decision tree classifier was used to map cropping patterns based on these temporal indices. Croplands from Landsat imagery in 2016, cropping pattern samples from field survey in 2016, and the planted area of crop types in 2015 were used for accuracy assessment. Overall accuracies of approximately 90%, 73% and 86%, respectively were obtained for croplands, cropping patterns, and crop types. The adjusted coefficients of determination of total crop, soy, maize, and cotton areas with corresponding statistical areas were 0.94, 0.94, 0.88 and 0.88, respectively. This research indicates that the proposed approach is promising for mapping large-scale croplands, their cropping patterns and crop types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.