Abstract

BackgroundDrought stress is a major limitation to rainfed rice production and yield stability. Identifying yield-associated quantitative trait loci (QTLs) that are consistent under drought stress predominant in target production environments, as well as across different genetic backgrounds, will help to develop high-yielding rice cultivars suitable for water-limited environments through marker-assisted breeding (MAB). Considerable progress has been made in mapping QTLs for drought resistance traits in rice; however, few have been successfully used in MAB.ResultsRecombinant inbred lines of IR20 × Nootripathu, two indica cultivars adapted to rainfed target populations of environments (TPEs), were evaluated in one and two seasons under managed stress and in a rainfed target drought stress environment, respectively. In the managed stress environment, the severity of the stress meant that measurements could be made only on secondary traits and biomass. In the target environment, the lines experienced varying timings, durations, and intensities of drought stress. The rice recombinant inbred lines exhibited significant genotypic variation for physio-morphological, phenological, and plant production traits under drought. Nine and 24 QTLs for physio-morphological and plant production traits were identified in managed and natural drought stress conditions in the TPEs, respectively. Yield QTLs that were consistent in the target environment over seasons were identified on chromosomes 1, 4, and 6, which could stabilize the productivity in high-yielding rice lines in a water-limited rainfed ecosystem. These yield QTLs also govern highly heritable key secondary traits, such as leaf drying, canopy temperature, panicle harvest index and harvest index.ConclusionThree QTL regions on chromosome 1 (RM8085), chromosome 4 (I12S), and chromosome 6 (RM6836) harbor significant additive QTLs for various physiological and yield traits under drought stress. The similar chromosomal region on 4 and 6 were found to harbor QTLs for canopy temperature and leaf drying under drought stress conditions. Thus, the identified large effect yield QTLs could be introgressed to develop rice lines with stable yields under varying natural drought stress predominant in TPEs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12284-015-0053-6) contains supplementary material, which is available to authorized users.

Highlights

  • Drought stress is a major limitation to rainfed rice production and yield stability

  • Quantitative trait locus (QTL) mapping followed by marker-assisted breeding (MAB) could be an effective approach to identify genomic regions linked to crop performance in stressful environments, and pyramiding the desirable alleles could improve drought resistance in crops (Ashraf, 2010)

  • In trial 2 of the target populations of environments (TPEs), the recombinant inbred lines (RILs) under rainfed treatment experienced a dry spell of 26 days during flowering, which resulted in a reduction of grain yield by 38.7 % and straw yield by 27.9 %

Read more

Summary

Introduction

Identifying yield-associated quantitative trait loci (QTLs) that are consistent under drought stress predominant in target production environments, as well as across different genetic backgrounds, will help to develop high-yielding rice cultivars suitable for water-limited environments through marker-assisted breeding (MAB). Direct selection for yield under stress in managed stress environments (MSEs) (Venuprasad et al 2007) and target environments (TEs) (Kumar et al 2008; Yadaw et al 2013) is considered a promising approach to improve drought tolerance in rice. Quantitative trait locus (QTL) mapping followed by marker-assisted breeding (MAB) could be an effective approach to identify genomic regions linked to crop performance in stressful environments, and pyramiding the desirable alleles could improve drought resistance in crops (Ashraf, 2010). The success rate of using QTLs in molecular breeding reflects the lack of repeatability of QTL effects across genetic backgrounds and environments (Bernier et al 2008)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.