Abstract
Catalytic reductions of some aromatic halides were performed at a millimetric electrode with several redox mediators. The resulting concentration profiles were monitored amperometrically by placing an ultramicroelectrode inside the diffusion layer produced at the former electrode. The features of redox catalysis and the subsequent structuring of the diffusion layer were investigated experimentally under steady-state conditions imposed by the spontaneous convection of the solution. The concentration profiles established from the probe measurements were in agreement with our theoretical predictions, based on fast kinetics of redox catalysis. Under these conditions, very similar to preparative electrosynthesis, the diffusion layer separates into two domains where pure diffusion takes place and the concentration profiles therein are mainly linear. We demonstrate that the limit between these two zones does not depend on kinetics, but is rather fixed by the product of the ratio of the bulk concentrations of each species and the ratio of their diffusion coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.