Abstract

Power generation from water-triggered capillary action in porous structures has recently geared extensive attention, offering the potential for generating electricity from ubiquitous water evaporation. However, conclusively establishing the nature of electrical generation and charge transfer is extremely challenging arising from the complicated aqueous solid-liquid interfacial phenomenon. Here, an electric probe-integrated microscope is developed to on-line monitor the correlation between water capillary action and potential values at any desired position of an active layer. With a probe spatial resolution reaching up to fifty micrometers, the internal factors prevailing over the potential distribution across the whole wet and dry regions are comprehensively identified. Further, the self-powered sensing capabilities of this integrated system are also demonstrated, including real-time monitoring of wind speed, environmental humidity, ionic strength, and inclination angle of generators. The combination of electric potential and chemical color indicator suggests that charge generation is likely correlated with ion-selective transport in the nanoporous channel during the water infiltration process. And unipolar ions (for instance protons) should be the dominant charge-transfer species. The work reveals the fundamental principles regulating charge generation/transfer during the water-triggered electric generation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call