Abstract
This study was designed to compare the performance – in terms of bias and accuracy – of four different parametric, semiparametric and nonparametric methods in spatially predicting a forest response variable using auxiliary information from remote sensing. The comparison was carried out in simulated and real populations where the value of response variable was known for each pixel of the study region. Sampling was simulated through a tessellation stratified design. Universal kriging and cokriging were considered among parametric methods based on the spatial autocorrelation of the forest response variable. Locally weighted regression and k-nearest neighbor predictors were considered among semiparametric and nonparametric methods based on the information from neighboring sites in the auxiliary variable space. The study was performed from a design-based perspective, taking the populations as fixed and replicating the sampling procedure with 1000 Monte Carlo simulation runs. On the basis of the empirical values of relative bias and relative root mean squared error it was concluded that universal kriging and cokriging were more suitable in the presence of strong spatial autocorrelation of the forest variable, while locally weighted regression and k-nearest neighbors were more suitable when the auxiliary variables were well correlated with the response variable. Results of the study advise that attention should be paid when mapping forest variables characterized by highly heterogeneous structures. The guidelines of this study can be adopted even for mapping environmental attributes beside forestry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.