Abstract

We use computer simulations to test a simple idea for mapping between long-time self diffusivities obtained from molecular and Brownian dynamics. The strategy we explore is motivated by the behavior of fluids comprising particles that interact via inverse-power-law pair potentials, which serve as good reference models for dense atomic or colloidal materials. Based on our simulation data, we present an empirical expression that semi-quantitatively describes the “atomic” to “colloidal” diffusivity mapping for inverse-power-law fluids, but also for model complex fluids with considerably softer (star-polymer, Gaussian-core, or Hertzian) interactions. As we show, the anomalous structural and dynamic properties of these latter ultrasoft systems pose problems for other strategies designed to relate Newtonian and Brownian dynamics of hard-sphere-like particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.