Abstract

SUMMARY The Pohang Basin sustained the most extensive seismic damage in the history of instrumental recording in Korea due to the 2017 Mw 5.5 earthquake. The pattern of damage shows marked differences from a radial distribution, suggesting important contributions by local site effects. Our understanding of these site effects and their role in generating seismic damage within the study area remains incomplete, which indicates the need for a thorough exploration of subsurface information, including the thickness of soil to bedrock and basin geometry, in the Pohang Basin. We measured the depth to bedrock in the Pohang Basin using dense ambient noise measurements conducted at 698 sites. We propose a model of basin geometry based on depths and dominant frequencies derived from the horizontal-to-vertical spectral ratio (HVSR) of microtremor at 698 sites. Most microseismic measurements exhibit one or more clear HVSR peak(s), implying one or more strong impedance contrast(s), which are presumed to represent the interface between the basement and overlying basin-fill sediments at each measurement site. The ambient seismic noise induces resonance at frequencies as low as 0.32 Hz. The relationship between resonance frequency and bedrock depth was derived using data from 27 boreholes to convert the dominant frequencies measured at stations adjacent to the boreholes into corresponding depths to the strong impedance contrast. The relationship was then applied to the dominant frequencies to estimate the depth to bedrock over the whole study area. Maps of resonance frequency and the corresponding depth to bedrock for the study area show that the greatest depths to bedrock are in the coastal area. The maps also reveal lower fundamental frequencies in the area west of the Gokgang Fault. The results indicate a more complex basin structure than previously proposed based on a limited number of direct borehole observations and surface geology. The maps and associated profiles across different parts of the study area show pronounced changes in bedrock depth near inferred blind faults proposed in previous studies, suggesting that maps of bedrock depth based on the HVSR method can be used to infer previously unknown features, including concealed or blind faults that are not observed at the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.