Abstract

Large, high-quality multi-element geochemical datasets are becoming widely available in the exploration industry, and afford excellent opportunities to investigate geochemical processes. A dataset of over 2500 analyses of unweathered and variably weathered mafic and ultramafic rocks for over 50 elements has been collected by Gold Fields Ltd. in the auriferous Agnew-Lawlers area of the eastern Yilgarn Craton of Western Australia. This dataset is used to investigate changes in element abundances and inter-element ratios through varying degrees and styles of weathering in an area of thick regolith characterised by deep in situ weathering. Systematic interrogation of the data, using lithostratigraphic controls derived from regional mapping and geophysics, reveals that a suite of elements, including Ti, Al, Zr, Th, La, Sc and Nb, and to a lesser extent Cr and Ni, behave as essentially immobile components during saprolite formation. In some cases diagnostic element ratios persist into siliceous duricrust. Ratios of these elements are used as reliable discriminants of bedrock type, and delineate features such as cryptic layering within fractionated sills and subtle geochemical variants in a sequence of tholeiitic and komatiitic basalts. Mapping on the basis of discriminant element ratios greatly extends previous trace-element ratio-based schemes for rock type discrimination. The potential to determine several of these elements with adequate precision and accuracy using portable XRF technology opens a potentially useful technique for rapid geochemical bedrock mapping in residual terrains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call