Abstract

In this work, we introduce a novel tensor-based functional for targeted image enhancement and denoising. Via explicit regularization, our formulation incorporates application-dependent and contextual information using first principles. Few works in literature treat variational models that describe both application-dependent information and contextual knowledge of the denoising problem. We prove the existence of a minimizer and present results on tensor symmetry constraints, convexity, and geometric interpretation of the proposed functional. We show that our framework excels in applications where nonlinear functions are present such as in gamma correction and targeted value range filtering. We also study general denoising performance where we show comparable results to dedicated PDE-based state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.