Abstract

Air pollution can significantly accelerate the process of material corrosion, which may cause significant economic losses and serious safety incidents. Atmospheric corrosion maps provide atmospheric corrosivity in a given geographic scope, which can guide the designers to select the most suitable anti-corrosion materials for outdoor projects, also provide useful information for maintenance. This article investigated mapping of atmospheric corrosivity in Shandong Province, China. In order to obtain atmospheric corrosivity data, 100 exposure corrosion test sites were established in Shandong according to International Standard Organization (ISO) 8565. Hot-dip galvanized steel samples were exposed for 1 year in the test sites. Taking the results of exposure corrosion test as the data, inverse distance weighting (IDW) and ordinary kriging (OK) interpolation algorithm were used to estimate the atmospheric corrosivity of Shandong Province according to ISO 9223. The validity of OK and IDW was compared in developing atmospheric corrosion maps of Shandong Province on a 1 × 1 km resolution. The cross-validation results showed that OK interpolation algorithm with Gaussian semivariogram model get the best result in the prediction of corrosion rate. When the corrosion category was used as the criterion, the IDW interpolation algorithm of power 4 performed best, predicted results of 74 sites (n = 100) were consistent with observed. However, high mean relative errors (MRE more than 37%) and relatively low correlation (R2 about 24%) indicated that the prediction results of the two interpolation algorithms had a large error, which was caused by the low data density and the complicated corrosive factors of the atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call