Abstract

This paper attempts to evaluate various methods of geometrical discontinuity characterization using point clouds that are generated with three-dimensional terrestrial laser scanning (3DTLS) in a tunnel. The use of 3DTLS to support discontinuity mapping in tunnels enables the acquisition of a large amount of data without limitations in terms of the tunnel position (wall or roof). Thus, the discontinuity orientation, trace length and frequency were statistically analyzed in different regions of the tunnel to determine the most representative data. Different methods of estimating the mean trace length were compared while considering the variations in the rock face orientation in the tunnel, and the unbiased standard deviation of the trace length was evaluated. The frequencies of discontinuity sets were obtained using scanlines, and aspects of window sampling for density (areal frequency) estimates in tunnels are discussed. The mean trace lengths obtained using rectangular sampling windows (considering the relative frequency of the traces) are more suitable for estimates of different rock face orientations, particularly when the orientation of the discontinuity set varies significantly. In this case, measurements of samples from the tunnel roof presented higher values for both frequency and mean trace length estimates, which demonstrates the importance of data acquisition and evaluation in this region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call