Abstract

Research on the detection of informal settlements has increased in the past three decades owing to the availability of high- to very-high-spatial-resolution satellite imagery. The achievement of development goals, such as the Sustainable Development Goals, requires access to up-to-date information on informal settlements. This review provides an overview of studies that used object-based image analysis (OBIA) techniques to detect informal settlements using remotely sensed data. This paper focuses on three main aspects: image processing steps followed when detecting informal settlements using OBIA; informal settlement indicators and image-based proxies used to detect informal settlements; and a review of studies that extracted and analyzed informal settlement land use objects. The success of OBIA in detecting informal settlements depends on the understanding and selection of informal settlement indicators and image-based proxies used during image classification. To meet the local ontology of informal settlements, the transfer of OBIA mapping techniques requires the fine-tuning of the rulesets. Machine learning OBIA techniques using image proxies derived from multiple sensors increase the opportunities for detecting informal settlements on the city or national level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.