Abstract

Chromatin profiling has emerged as a powerful means for genome annotation and detection of regulatory activity. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell type-specificities, and their functional interactions. Focusing on cell type-specific patterns of promoters and enhancers, we define multi-cell activity profiles for chromatin state, gene expression, regulatory motif enrichment, and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for interpreting genome-wide association studies. Top-scoring disease SNPs are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus proposing a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call