Abstract

Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around one thousand scholars, seventy laboratories, and three institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map thus shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own positioning in the academic group in order to foster opportunities for new collaborations and, eventually, the interpretation of the structure from a general public to evaluate the relevance of the tool for external communication.

Highlights

  • Science mapping is a research field that deals with visual representations of science

  • The digital traces employed to create visualizations stand for the information that scholars leave behind them during the daily practice (Börner, 2015)

  • This field puts together the experience inherited from bibliometrics, whose father is acknowledged as being Eugene Garfield (1970), and data visualization, Mapping Affinities in Academic Organizations which reassembles practitioners from diverse disciplines from the nineties (Tufte, 1990)

Read more

Summary

Introduction

Science mapping is a research field that deals with visual representations of science. The digital traces employed to create visualizations stand for the information that scholars leave behind them during the daily practice (Börner, 2015). This field puts together the experience inherited from bibliometrics, whose father is acknowledged as being Eugene Garfield (1970), and data visualization, Mapping Affinities in Academic Organizations which reassembles practitioners from diverse disciplines from the nineties (Tufte, 1990). Without questioning the value of academic writing, which is still the major form of dissemination for scholarly research, we consider a larger meaning to bibliometrics that might include the multiplicity of academic activities. Writing is not the only activity requested to scholars, and education is relevant in their daily practice

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call