Abstract

Evolutionary alterations to cis-regulatory sequences are likely to cause adaptive phenotypic complexity, through orchestrating changes in cellular proliferation, identity and communication. For nonmodel organisms with adaptive key innovations, patterns of regulatory evolution have been predominantly limited to targeted sequence-based analyses. Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) is a technology that has been primarily used in genetic model systems and is a powerful experimental tool to screen for active cis-regulatory elements. Here, we show that it can also be used in ecological model systems and permits genomewide functional exploration of cis-regulatory elements. As a proof of concept, we use ChIP-seq technology in adult fin tissue of the cichlid fish Oreochromis niloticus to map active promoter elements, as indicated by occupancy of trimethylated Histone H3 Lysine 4 (H3K4me3). The fact that cichlids are one of the most phenotypically diverse and species-rich families of vertebrates could make them a perfect model system for the further in-depth analysis of the evolution of transcriptional regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.