Abstract

Convolutional Neural Networks (CNN) have been successfully applied to images, text and audio, but their performance are not so good when applied to feature-based tabular data. Exceptions are works such as TabNet and DeepInsight, which employ end-to-end approaches. In this work, we propose an alternative way of using CNNs to model tabular data where knowledge is extracted from the feature space before being introduced to the network. Our strategy, Map-Optimize-Learn (MOL), changes the shape representation of samples in order to produce suitable input data for the CNN architecture. The strategy is applied to a real-world scenario of children and teenagers with cardiac pathology and compared against baseline and state of the art Machine Learning (ML) algorithms for tabular datasets. Preliminary results suggest that the strategy has potential to improve prediction quality of tabular data over end-to-end CNN methods and classical ML methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.