Abstract
Matching molecular analogues is a computational chemistry and bioinformatics research issue which is used to identify molecules that are structurally or functionally similar to a target molecule. Recent studies on matching analogous molecules have predominantly concentrated on enhancing effectiveness, often sidelining computational efficiency, particularly in contexts of low computational resources. This oversight poses challenges in many real applications (e.g., drug discovery, catalyst generation and so forth). To tackle this issue, we propose a general strategy named MapLE, aiming to promptly match analogous molecules with low computational resources by multi-metrics evaluation. Experimental evaluation conducted on a public biomolecular dataset validates the excellent and efficient performance of the proposed strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.