Abstract

Developing male germ cells are extremely sensitive to heat stress; consequently, anatomic and physiologic adaptations have evolved to maintain proper thermoregulation during mammalian spermatogenesis. At the cellular level, increased expression and activity of HSP70 family members occur in response to heat stress in order to refold partially denatured proteins and restore function. In addition, several kinase-mediated signaling pathways are activated in the testis upon hyperthermia. The p38 MAP kinase (MAPK) pathway plays an important role in mitigating heat stress, and recent findings have implicated the downstream p38 substrate, MAPKAP kinase 2 (MK2), in this process. However, the precise function that this kinase plays in spermatogenesis is not completely understood. Using a proteomics-based screen, we identified and subsequently validated that the testis-enriched HSP70 family member, HspA1L, is a novel substrate of MK2. We demonstrate that MK2 phosphorylates HspA1L solely on Ser241, a residue within the N-terminal nucleotide-binding domain of the enzyme. This phosphorylation event enhances the chaperone activity of HspA1L in vitro and renders male germ cells more resistant to heat stress-induced apoptosis. Taken together, these findings illustrate a novel stress-induced signaling cascade that promotes the chaperone activity of HspA1L with implications for understanding male reproductive biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.